33 research outputs found

    Gravitational Thermodynamics of Causal Diamonds in (A)dS

    Get PDF
    The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a "first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation, it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the "entanglement equilibrium" result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed.Comment: v3: 64 pages, 6 appendices, 8 figures; matches published versio

    Hints towards the Emergent Nature of Gravity

    Full text link
    A possible way out of the conundrum of quantum gravity is the proposal that general relativity (GR) is not a fundamental theory but emerges from an underlying microscopic description. Despite recent interest in the emergent gravity program within the physics as well as the philosophy community, an assessment of the theoretical evidence for this idea is lacking at the moment. We intend to fill this gap in the literature by discussing the main arguments in favour of the hypothesis that the metric field and its dynamics are emergent. First, we distinguish between microstructure inspired from GR, such as through quantization or discretization, and microstructure that is not directly motivated from GR, such as strings, quantum bits or condensed matter fields. The emergent gravity approach can then be defined as the view that the metric field and its dynamics are derivable from the latter type of microstructure. Subsequently, we assess in how far the following properties of (semi-classical) GR are suggestive of underlying microstructure: (1) the metric's universal coupling to matter fields, (2) perturbative non-renormalizability, (3) black hole thermodynamics, and (4) the holographic principle. In the conclusion we formalize the general structure of the plausibility arguments put forward.Comment: 36 pages, v2: minor additions, references added. Journal version in Studies in History and Philosophy of Modern Physic

    Holographic Thermodynamics Requires a Chemical Potential for Color

    Full text link
    The thermodynamic Euler equation for high-energy states of large-NN gauge theories is derived from the dependence of the extensive quantities on the number of colors NN. This Euler equation relates the energy of the state to the temperature, entropy, number of degrees of freedom and its chemical potential, but not to the volume or pressure. In the context of the gauge/gravity duality we show that the Euler equation is dual to the generalized Smarr formula for black holes in the presence of a negative cosmological constant. We also match the fundamental variational equation of thermodynamics to the first law of black hole mechanics, when extended to include variations of the cosmological constant and Newton's constant.Comment: 9 pages, v2: corrected reference to Karch-Robinson, clarified regime of validity of holographic Euler equation, and fixed typos; v3: reorganized and rewritten, added a brief discussion about Lifshitz black holes and a new section on comparison with previous literatur

    Entropy of causal diamond ensembles

    Full text link
    We define a canonical ensemble for a gravitational causal diamond by introducing an artificial York boundary inside the diamond with a fixed induced metric and temperature, and evaluate the partition function using a saddle point approximation. For Einstein gravity with zero cosmological constant there is no exact saddle with a horizon, however the portion of the Euclidean diamond enclosed by the boundary arises as an approximate saddle in the high-temperature limit, in which the saddle horizon approaches the boundary. This high-temperature partition function provides a statistical interpretation of the recent calculation of Banks, Draper and Farkas, in which the entropy of causal diamonds is recovered from a boundary term in the on-shell Euclidean action. In contrast, with a positive cosmological constant, as well as in Jackiw-Teitelboim gravity with or without a cosmological constant, an exact saddle exists with a finite boundary temperature, but in these cases the causal diamond is determined by the saddle rather than being selected a priori.Comment: 15 pages, 3 figures, v3: added references and edited introductio

    Partition function for a volume of space

    Full text link
    We consider the quantum gravity partition function that counts the dimension of the Hilbert space of a spatial region with topology of a ball and fixed proper volume, and evaluate it in the leading order saddle point approximation. The result is the exponential of the Bekenstein-Hawking entropy associated with the area of the saddle ball boundary, and is reliable within effective field theory provided the mild curvature singularity at the ball boundary is regulated by higher curvature terms. This generalizes the classic Gibbons-Hawking computation of the de Sitter entropy for the case of positive cosmological constant and unconstrained volume, and hence exhibits the holographic nature of nonperturbative quantum gravity in generic finite volumes of space.Comment: 10 pages plus appendices, 2 figures, v2: added figure and improved presentatio

    Towards non-AdS Holography via the Long String Phenomenon

    Get PDF
    The microscopic description of AdS space obeys the holographic principle in the sense that the number of microscopic degrees of freedom is given by the area of the holographic boundary. We assume the same applies to the microscopic holographic theories for non-AdS spacetimes, specifically for Minkowski, de Sitter, and AdS below its curvature radius. By taking general lessons from AdS/CFT we derive the cut-off energy of the holographic theories for these non-AdS geometries. Contrary to AdS/CFT, the excitation energy decreases towards the IR in the bulk, which is related to the negative specific heat of black holes. We construct a conformal mapping between the non-AdS geometries and AdS3 ⁣× ⁣SqAdS_3\!\times\! S^{q} spacetimes, and relate the microscopic properties of the holographic theories for non-AdS spaces to those of symmetric product CFTs. We find that the mechanism responsible for the inversion of the energy-distance relation corresponds to the long string phenomenon. This same mechanism naturally explains the negative specific heat for non-AdS black holes and the value of the vacuum energy in (A)dS spacetimes.Comment: 38+3 pages, 5 figures. v2: typos corrected, references added. v3: added refs and clarifications in the conclusion; matches published versio

    Semi-classical thermodynamics of quantum extremal surfaces in Jackiw-Teitelboim gravity

    Get PDF
    Quantum extremal surfaces (QES), codimension-2 spacelike regions which extremize the generalized entropy of a gravity-matter system, play a key role in the study of the black hole information problem. The thermodynamics of QESs, however, has been largely unexplored, as a proper interpretation requires a detailed understanding of backreaction due to quantum fields. We investigate this problem in semi-classical Jackiw-Teitelboim (JT) gravity, where the spacetime is the eternal two-dimensional Anti-de Sitter (AdS2) black hole, Hawking radiation is described by a conformal field theory with central charge c, and backreaction effects may be analyzed exactly. We show the Wald entropy of the semi-classical JT theory entirely encapsulates the generalized entropy β€” including time-dependent von Neumann entropy contributions β€” whose extremization leads to a QES lying just outside of the black hole horizon. Consequently, the QES defines a Rindler wedge nested inside the enveloping black hole. We use covariant phase space techniques on a time-reflection symmetric slice to derive a Smarr relation and first law of nested Rindler wedge thermodynamics, regularized using local counterterms, and intrinsically including semi-classical effects. Moreover, in the microcanonical ensemble the semi-classical first law implies the generalized entropy of the QES is stationary at fixed energy. Thus, the thermodynamics of the nested Rindler wedge is equivalent to the thermodynamics of the QES in the microcanonical ensemble
    corecore